

Thermochimica Acta 258 (1995) 189-195

thermochimica acta

On the existence of lower hydrates of M(OH)X(M is Sr, Ba; X is Cl, Br, I)

K. Beckenkamp, H.D. Lutz*

Universität Siegen, Anorganische Chemie I, D-57068 Siegen, Germany

Received 17 June 1994; accepted 12 November 1994

Abstract

Preparation of the lower hydrates of M(OH)X(M is Ba, Sr; X is Cl, Br, I) was attempted both by dehydration experiments of $Ba(OH)X \cdot 2H_2O(X$ is Cl, Br), $Ba(OH)I \cdot 4H_2O$, and $Sr(OH)X \cdot 4H_2O(X$ is Cl, Br), and by rehydration of the anhydrous salts using infrared, Raman, and high-temperature Raman spectroscopic methods. Thus, the hitherto unknown compound $Ba(OH)I \cdot 2H_2O$ has been established and $Ba(OH)CI \cdot 0.5 H_2O$, but not $Ba(OH)Br \cdot 0.5 H_2O$, has been confirmed. $Ba(OH)I \cdot 0.5 H_2O$ and lower hydrates of Sr(OH)X were not obtained. $Ba(OH)I \cdot 2H_2O$ is isostructural with $Ba(OH)X \cdot 2H_2O$ (X is Cl, Br). The crystal structure of $Ba(OH)CI \cdot 0.5 H_2O$ is not known so far. The dehydration and fusing temperatures of $M(OH)X \cdot 4H_2O$ and M(OH)X, respectively, are presented.

Keywords: Dehydration; Halide; Hydration; IRS; Raman

1. Introduction

The higher hydrates of the barium and strontium hydroxy halides $Ba(OH)X \cdot 2H_2O$ (X is Cl, Br), $Sr(OH)X \cdot 4H_2O$ (X is Cl, Br), and $Ba(OH)I \cdot 4H_2O$ are well established [1–6]. The crystal structures of these compounds are noteworthy in so far as that the former belong to the very few structures in which OH^- ions are not coordinated to metal ions [3,4,7]. The latter possess water molecules which are the most distorted ones known so far. This is due to the extremely differently strong hydrogen bonds formed [6,8]. Literature data on the lower hydrates of these basic salts are scarce [1,5]. The only compounds mentioned are $Ba(OH)X \cdot 0.5 H_2O$ with X being Cl and Br, apart from the well-established anhydrous salts [1,5,9,10].

^{*} Corresponding author.

^{0040-6031/95/\$09.50 (© 1995 -} Elsevier Science B.V. All rights reserved SSD1 0040-6031(94)02213-5

In this paper, we demonstrate the existence of lower hydrates of M(OH)X (M is Ba, Sr; X is Cl, Br, I) by means of IR, Raman, and high-temperature Raman spectroscopic methods, and by thermoanalytical (DTA, TG, DTG) measurements.

2. Experimental

The starting materials were $Ba(OH)X \cdot 2H_2O$ (X is Cl, Br) and $Ba(OH)I \cdot 4H_2O$. They (as well as deuterated specimens) were prepared by crystallization of aqueous solutions of the respective halides and hydroxides in molar ratios of 10:1; for details, see Refs. [3,9,10].

Preparation of the lower hydrates of the title compounds was attempted by dehydration of the higher hydrated hydroxide halides and by rehydration of anhydrous M(OH)X, respectively.

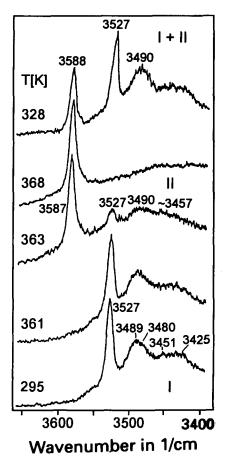


Fig. 1. High-temperature Raman spectroscopic dehydration studies of $Ba(OH)I \cdot 4H_2O$ (closed tube): I, $Ba(OH)I \cdot 4H_2O$; II, Ba(OH)I.

DTA (difference thermal analysis), TG (thermogravimetry) and DSC (differential scanning calorimetry) measurements were carried out on Linseis L 62, Mettler TA 4000, and Perkin-Elmer DSC 7 systems, using silica tubes and gold crucibles as sample holders, respectively. Heating rates were $5-10^{\circ}$ C min⁻¹. Al₂O₃ was used as reference.

IR spectra of dehydrated and rehydrated samples, respectively, were recorded on a Perkin-Elmer model 580 spectrophotometer (resolution $< 1 \text{ cm}^{-1}$) using KBr and CsI discs as well as Nujol and Fluorolub mulls. Raman spectra, with the samples in

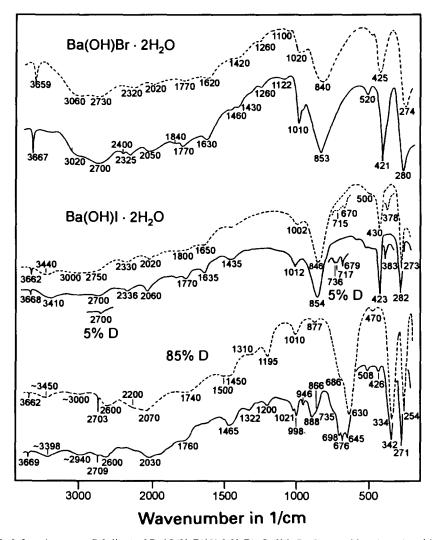


Fig. 2. Infrared spectra (CsI discs) of Ba $\{O(H, D)\}X \cdot 2(H, D)_2O(X \text{ is } Br, I)$ at ambient (---) and liquid nitrogen temperature (----). Assignment of the observed bands (cm⁻¹) [3]: 3662 and 2703, stretches of OH⁻ and OD⁻; 2700-3000, stretches of H₂O; 846 and 630, librations of H₂O and D₂O; 430 and 334, librations of OH⁻ and OD⁻; < 300 cm⁻¹, translational modes (data for X is I).

glass capillaries, were measured on a Dilor OMARS 89 multichannel Raman spectrograph (resolution $< 4 \text{ cm}^{-1}$) with the usual right-angle geometry. For excitation, the 514.5 nm line of an Ar⁺ ion laser was employed. Further details, especially with respect to high-temperature Raman measurements, are given elsewhere [9, 11].

3. Results and discussion

3.1. $Ba(OH)I \cdot 2H_2O$

The existence of the hitherto unknown $Ba(OH)I \cdot 2H_2O$ compound was first detected by dehydration of $Ba(OH)I \cdot 4H_2O$ in a CsI matrix in the course of IR spectroscopic measurements [9]. The tetrahydrate dehydrates very easily to the anhydrous salt. With

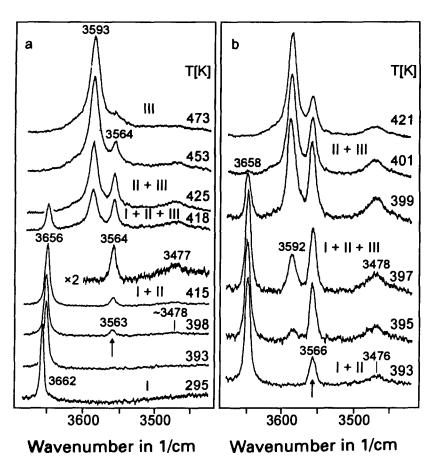


Fig. 3. High-temperature Raman spectroscopic dehydration studies of $Ba(OH)Cl \cdot 2H_2O$: a, closed tube; b, open tube; I, $Ba(OH)Cl \cdot 2H_2O$; II, $Ba(OH)Cl \cdot 0.5 H_2O$; III, Ba(OH)Cl; \uparrow , OH stretching mode (OH⁻ ions) of $Ba(OH)Cl \cdot 0.5 H_2O$.

thermal analyses (DTA, etc.), dehydration starts at 348 K (onset, T_{max} , 368 K; open crucible). The dihydrate is obtained if the disc is produced with a pressure of 10⁹ Pa (10 t cm⁻²) using a cooled mortar. High-temperature Raman studies, however, do not reveal the existence of this compound, either on dehydration of the tetrahydrate or on rehydration of Ba(OH)I (see Fig. 1).

IR spectra of Ba $\{O(H, D)\}I \cdot 2H_2O$ are shown in Fig. 2. The spectra are very similar to those of Ba $(OH)Br \cdot 2H_2O$ [3] indicating that the hydrogen bonds formed are very similar in these compounds. Obviously, the hydrogen bond system present in Ba $(OH)CI \cdot 2H_2O$ -type structures cannot be further expanded on substitution of Br by I without destabilization of the structure. This also explains the low stability of the iodide under discussion.

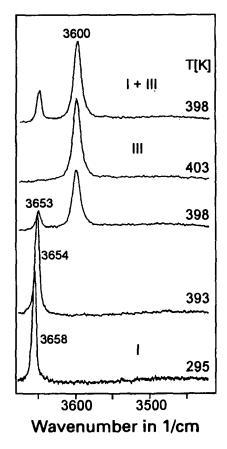


Fig. 4. High-temperature Raman spectroscopic dehydration studies of $Ba(OH)Br \cdot 2H_2O$ (closed tube): I, $Ba(OH)Br \cdot 2H_2O$; III, Ba(OH)Br.

	Ba(OH)Cl	Ba(OH)Br	Ba(OH)I	Sr(OH)Cl	Sr(OH)Br	Sr(OH)I
Tonset	805	850	937	782	848	934
T _{max}	814	863	949	793	863	943
H _M	21.4	22	36.5	22.4	17.2	29.0

Fusing temperatures (K) and fusing energies (kJ mol⁻¹) of M(OH)X (DSC measurements, Au crucibles)

3.2. $Ba(OH) X \cdot 0.5 H_2 O(X \text{ is } Cl, Br)$

Unlike Ba(OH)Br $\cdot 0.5$ H₂O, Ba(OH)Cl $\cdot 0.5$ H₂O can be prepared by both dehydration of the dihydrate at ambient temperature over P₂O₅ and by rehydration of the anhydrous compound with stoichiometric amounts of H₂O[3, 5]. On dehydration of Ba(OH)Cl $\cdot 2$ H₂O at higher temperatures (DTA and DSC studies [2, 3, 9, 12]), the two water molecules are usually emitted in one step. These findings were confirmed by high-temperature Raman experiments (see Figs. 3 and 4), which indicate that Ba(OH)Cl $\cdot 0.5$ H₂O, but not Ba(OH)Br $\cdot 0.5$ H₂O, is a real compound. Formation of Ba(OH)Cl $\cdot 0.5$ H₂O starts at 390 K, and that of Ba(OH)Cl starts at 410 K (closed tube). The hemihydrate can be detected and distinguished from other barium hydroxide chlorides by the Raman band at 3564 cm⁻¹ which is due to the stretching mode of the OH⁻ ions.

3.3. Lower hydrates of Sr(OH)X

Compounds like Sr(OH)X $\cdot 0.5$ H₂O and Sr(OH)X $\cdot 2$ H₂O (X is Cl, Br) have not been established. Sr(OH)X $\cdot 4$ H₂O (X is Cl, Br) dehydrate to the anhydrous compounds in one step. Dehydration starts at 321 and 335 K, respectively (onset, T_{max} , 351 and 361 K, open tube, DTA) [9]. In the case of the iodide, the tetrahydrate reported in Refs. [1, 5] could not be prepared. Therefore, its existence is debatable.

3.4. M(OH)X (M is Ba, Sr; X is Cl, Br, I)

Anhydrous Ba(OH)X (X is Cl, Br, I) and Sr(OH)I (all laurionite type [9, 10, 13, 14]), Sr(OH)Br (space group P2₁3 [13]), and Sr(OH)Cl, Cd(OH)Cl-type [13], melt undecomposed at 780–940 K (see Table 1). On further heating, decomposition to MO and M_4OX_6 [15] occurs.

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Table 1

References

- Gmelins Handbuch der anorganischen Chemie, Barium, 8. Aufl., No. 30, Teil B, Verlag Chemie, Weinheim, 1960.
- [2] T.V. Mozharova and E.N. Pavlyuchenko, Zh. Neorg. Khim., 24 (1979) 2522; Russ. J. Inorg. Chem., 24 (1979) 1401.
- [3] H.D. Lutz, Th. Kellersohn and K. Beckenkamp, Z. Naturforsch. Sect. b, 44 (1989) 928.
- [4] Th. Kellersohn, K. Beckenkamp, H.D. Lutz and E. Jansen, Acta Crystallogr. Sect. C, 47 (1991) 483.
- [5] H. Aspelund, Acta Acad. Abo. Ser. B, 7 (1933) (5) 1 and (6) 1.
- [6] Th. Kellersohn, K. Beckenkamp and H.D. Lutz, Z. Naturforsch. Sect. b, 46 (1991) 1279.
- [7] H.D. Lutz, Struct. Bonding (Berlin), H 82 (1995) 85.
- [8] H.D. Lutz, Struct. Bonding (Berlin), 69 (1988) 79.
- [9] K. Beckenkamp, Doctoral Thesis, University of Siegen, 1991.
- [10] H. Möller, K. Beckenkamp, Th. Kellersohn, H.D. Lutz and J.K. Cockcroft, Z. Kristallogr., 209 (1994) 157.
- [11] J. Henning and H.D. Lutz, Thermochim. Acta, 150 (1989) 141.
- [12] O.A. Markova, Zhur. Fiz. Khim., 48 (1975) 38; Russ. J. Phys. Chem., 49 (1975) 21.
- [13] St. Peter, K. Beckenkamp and H.D. Lutz, unpublished results.
- [14] H. Möller, Doctoral Thesis, University of Siegen, 1993.
- [15] A.F. Wells, Structural Inorganic Chemistry, 5th edn. Clarendon Press, Oxford, 1984, p. 488.